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Abstract Financial distress prediction is very important to financial institutions who must
be able to make critical decisions regarding customer loans. Bankruptcy prediction and credit
scoring are the two main aspects considered in financial distress prediction. To assist in this
determination, thereby lowering the risk borne by the financial institution, it is necessary
to develop effective prediction models for prediction of the likelihood of bankruptcy and
estimation of credit risk. A number of financial distress prediction models have been con-
structed, which utilize various machine learning techniques, such as single classifiers and
classifier ensembles, but improving the prediction accuracy is the major research issue. In
addition, aside from improving the prediction accuracy, there have been very few studies that
specifically consider lowering the Type I error. In practice, Type I errors need to receive care-
ful consideration during model construction because they can affect the cost to the financial
institution. In this study, we introduce a classifier ensemble approach designed to reduce the
misclassification cost. The outputs produced bymultiple classifiers are combined by utilizing
the unanimous voting (UV) method to find the final prediction result. Experimental results
obtained based on four relevant datasets show that our UV ensemble approach outperforms
the baseline single classifiers and classifier ensembles. Specifically, the UV ensemble not
only provides relatively good prediction accuracy and minimizes Type I/II errors, but also
produces the smallest misclassification cost.
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1 Introduction

Financial distress prediction is a necessary capability for financial institutions. In general, the
aim is to predict the risk to the institution related to customer loans. Prediction models should
be able to accurately identify the potential for failure of the customer applying for the loan,
whether an individual or a company. Specifically, bankruptcy prediction and credit scoring
are the two most important aspects considered for the prediction of financial distress [24].

Bankruptcy prediction focuses on predicting the likelihood that loan receivers will become
bankrupt, while determination of the credit score is important for credit evaluation to deter-
mine whether loan applicants should be classified into a high-risk or low-risk group. Both
problems can be regarded as binary classification problems and can be solved with a variety
of statistical and machine learning techniques [2,8,21,24,33].

One of the earliest works mentioned in the literature was conducted by Fitzpartrick [13]
who evaluated company health, examining 13 financial ratios and 40 companies. Since then,
many financial distress prediction models have been developed based on different statistical
methods, including univariate analysis [3], discriminant analysis [1], and logistic regression
[25].

Recently, machine learning techniques have been applied and have shown their superiority
over traditional statistical methods. These methods have included support vector machines
(SVM) [30], decision trees (DT) [23], and artificial neural networks (ANN) [26,31,37].

It has been proposed that a combination of multiple classifiers (or classifier ensembles)
be utilized to improve on the performance of single classifiers in machine learning [19]. This
has become one of the main focuses in machine learning [10]. Simply speaking, classifier
ensembles are solved based on the “divide-and-conquer” principle, in which a complex prob-
lem is divided into subproblems, and each subproblem is solved by a specific classification
technique. Then, the outputs generated by multiple classifiers are combined to obtain the
final result.

Classifier ensembles, including SVM ensembles [27], DT ensembles [43], and ANN
ensembles [38], have also been constructed for financial distress prediction that offer better
performance than single classifiers in terms of prediction accuracy.

Despite the improvement in the performance of classifier ensembles, in terms of their
average classification (or prediction) accuracy, there have been very few studies which have
focused specifically on dealing with Type I and II errors. Type I error, or a false positive,
occurs when the classifier incorrectly classifies a bankrupt firm (or member of the high-risk
group) as part of the non-bankrupt class (or the low-risk group). Type II error, on the other
hand, occurs when the classifier incorrectly classifies a non-bankrupt firm into the bankrupt
class. A larger Type I error rate results in higher costs to financial institutions and enhances
the enterprise risk. Thus, in practice, decisionmakers view the Type I error as far more serious
than the Type II error [28].

In related studies, the accuracy of the prediction rate is generally based on averaging the
Type I and II errors; however, it may be that the classifier that provides the best prediction
accuracy has a lower Type II error but higher Type I error, while the classifier that provides
the second best prediction accuracy might have the lowest Type I error.

To improve prediction accuracy as well as lower the Type I error rate, we propose a
novel classifier ensemble approach, called the unanimous voting (UV) ensemble, which is
based on the application of the unanimous voting method to combine the outputs obtained
from multiple classifiers. In particular, the UV ensemble produces the final prediction output
by choosing the class for which all classifiers agree, whereas the conventional classifier
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ensembles employ a majority voting method, choosing the class which receives the largest
number of votes.

The rest of this paper is organized as follows: Section 2 overviews classifier ensemble
techniques and reviews related studies on financial distress prediction. In addition, the limita-
tions of relatedworks are discussed. Section 3 describes the proposedUVensemble approach,
while the experimental setup and results are described in Sect. 4. Finally, some conclusions
are offered in Sect. 5.

2 Literature review

2.1 Classifier ensembles

The classifier ensemble is developed by combining a number of classifiers. Ensemble classi-
fiers aim at obtaining highly accurate classifications by combining less accurate ones. They
are designed to improve on the classification performance of a single classifier [19]. In other
words, the combination is able to make up for the errors made by the individual classifiers on
different parts of the input space. As a consequence, the performance of classifier ensembles
is likely to be better than that of the best single classifier used in isolation [4]. The four
combination methods most widely used for developing classifier ensembles are described
below.

2.1.1 Majority voting

The simplest method for combining multiple classifiers is by majority voting. In the case
of bankruptcy prediction and credit scoring, the binary outputs of k individual classifiers
are pooled together. Then, the class that receives the largest number of votes is selected as
the final classification decision. In general, the final classification decision that reaches the
majority of k+1

2 votes is taken.

2.1.2 Bagging

In bagging, several classifiers are trained independently on different training sets using the
bootstrap method [6]. Bootstrapping builds k replicated training datasets to construct k inde-
pendent classifiers by randomly re-sampling the original given training dataset, but with
replacements. Each training example may appear repeatedly or not at all in any particular
replicated training dataset of k. Then, the k classifiers are aggregated through an appropriate
combination method, such as majority voting.

2.1.3 Boosting

In boosting, like bagging, each classifier is trained using a different training set. However, the
k classifiers are trained sequentially rather than in parallel and independently (as in bagging).
Adaptive Boosting (AdaBoost) is the most representative boosting approach.

In AdaBoost, each example of a given training set has the same weight; n sets of training
samples among S are used to train the kth classifier. The trained classifier is then evaluated by
comparison of S in order to identify those examples which cannot be classified correctly. The
k + 1 classifier is then trained using a modified training set which boosts the importance of
those incorrectly classified examples. This sampling procedure is repeated until K training
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samples are built for constructing the K th classifier. The final decision is based on the
weighted vote of the individual classifiers [14].

2.1.4 Stacking

Stacking or stacked generalization [39] is generally based on constructing multi-level clas-
sifiers in a hierarchical way. The first level is composed of several single classifiers with
the outputs produced by the first-level classifiers used to train second level of the ‘stacked’
classifier. The final resultant decision is made based on the output of the stacked classifier.
Unlike the previously mentioned combination methods, such as majority voting, which is
a ‘static’ combiner, the stacked classifier is a ‘trainable’ combiner. In other words, it is a
scheme for estimating the errors of a classifier when working on a particular learning dataset
and then correcting those errors.

2.2 Discussion of the limitations of related work

Table 1 shows a comparison between related works based upon classifier ensemble tech-
niques, datasets, and evaluation metrics.

This comparison indicates someof the limitations of past studies. First, although it has been
concluded that classifier ensembles can provide better performance than single classifiers,
many of themonly constructed specific classifier ensembleswithoutmaking a comprehensive
comparison. In Wu et al. [40], the top 10 data mining algorithms are identified. Of these,
five are supervised learning-based classification techniques, namely the SVM, KNN, MLP
neural network, CART decision tree, and naïve Bayes. However, more reliable conclusions
could be reached by comparison of single classifiers and classifier ensembles for all five
of these techniques. In this current study, these five single classifiers are constructed as the

Table 1 Comparison of related works

Work Classifier ensemble Datasets Evaluation metrics

Geng [15] MVa of C4.5b, MLPc,
and SVM

Chinese Accuracy/Precision/
Recall

Heo and Yang [16] Boosting C4.5 Korean Accuracy/Type I &
II errors

Wang and Ma [35] Bagging SVM Chinese Accuracy/Type I &
II errors

Kim et al. [18] Bagging CARTd German Accuracy

Lei et al. [22] Boosting C4.5 German Accuracy

Shi et al. [29] Bagging MLP German Accuracy

Wang et al. [36] Boosting SVM Australian/German Accuracy

Wang et al. [34] Bagging SVM/Bagging
LRe/Boosting SVM

Australian/German Accuracy/Type I
error

West et al. [38] Bagging MLP Australian Accuracy

Yao [42] Boosting CART Australian Accuracy

a MV majority voting
b C4.5 C4.5 decision tree
c MLP multilayer perceptron neural network
d CART classification and regression decision tree
e LR logistic regression
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Fig. 1 An example of the ROC curves over the Taiwan dataset. a Results on specific single points, b results
on full curves

single baseline classifiers. The majority voting, bagging, boosting, and stacking methods
are also used to develop classifier ensembles for comparison based on the five classification
techniques.

Second, there have been very few studies where two or more relevant datasets are consid-
ered for the validation of performance. Many have used the publicly available Australian1

and German2 credit datasets, making data collection and direct comparison across different
studies very easy. However, they are often only used for credit scoring problems. There are
very few datasets related to the bankruptcy domain problem available. This may be because
of the difficulty in collecting information on a sufficient number of bankruptcy cases or that
the factors affecting bankruptcy vary between different countries. To make up for this insuf-
ficiency, in this paper we not only use the Australian and German datasets, but also collect
bankruptcy datasets from China and Taiwan. This should allow us to more fully examine the
performance of the constructed classifiers in terms of financial distress prediction.

Third, as discussed previously, classifiers with lower Type I errors allow financial institu-
tions to reduce the risk of spending too much. However, very few past studies have assessed
the Type I error of their prediction models. Moreover, the cost ratios and the cost of misclas-
sification [5] have seldom been examined even though they are indicative of the cost of Type
I and II errors. Therefore, in addition to examining the prediction accuracy and the Type I/II
errors, the cost ratios and misclassification costs of the constructed prediction models are
also assessed.

Moreover, the receiver operating characteristic curve (ROC curve) [12], which is a widely
used evaluation metric in many pattern recognition problems, is also considered. The ROC
curve is a graphical plot that illustrates the performance of a binary classifier as its discrim-
ination threshold is varied. Figure 1 shows examples with a single SVM (base.linearSVM)
and a bagging-based DT ensemble (bag.CART).

In our comparison of the average prediction accuracy and Type I/II errors of the two
classifiers, we focus on specific points on the ROC curves (as shown in Fig. 1a). In this
case, bag.CART performs better than base.linearSVM in terms of prediction accuracy and
Type I error. However, examining the full ROC curves of these two classifiers allows us to

1 http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval).
2 http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data).
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determine their performance given different Type I and II conditions. Simply speaking, in a
comparison of the two ROC curves, the classifier producing a smaller area under the curve
can be said to perform better than another one having a larger area under its corresponding
curve. Therefore, the ROC curves show that base.linearSVM outperforms bag.CART.

3 The UV ensemble approach

3.1 Unanimous voting

The UV ensemble approach is based on utilization of the classifier ensemble technique to
combine the outputs of multiple classifiers. Figure 2 shows the process of the UV ensemble
approach.

The given dataset, composed of data for several different case companies, is divided
into the training and testing datasets, based on the tenfold cross-validation strategy [20].
Specifically, the dataset is divided into 10 distinct subsets (or folds) where ninefolds are used
as the training sets and the remaining fold for the testing set. Consequently, a classifier is
trained and tested 10 times over ten different combinations of training and testing sets. The
classifier’s performance is based on averaging the 10 different results.

In Fig. 2, it can be seen that k different classifiers (i.e., k base learners) are trained and
tested and their outputs are combined based on the UV method to obtain the final prediction
result. This result is chosen based on the class on which all classifiers agree. For example,
when a testing case and three classifiers are combined (represented by k_1, k_2, and k_3)
four possible combination results can be produced (as shown in Table 2).

The UVmethod is used for lowering the Type I error, meaning that if one of the combined
classifiers outputs the class ‘1’, then the final result is ‘1’ for the testing case. Only when

Fig. 2 UV ensemble approach
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Table 2 Four possible results
produced by the unanimous
voting (UV) and majority voting
(MV) methods (1 represents
bankrupt and 0 non-bankrupt)

k_1 k_2 k_3 UV MV

1 0 0 1 1 0

2 1 1 0 1 1

3 1 1 1 1 1

4 0 0 0 0 0

Table 3 Prediction performance of 15 different classifiers over four datasets (accuracy/Type I error; unit:
percentage)

SVM KNN MLP CART Bayes

Taiwanese dataset

Single 82.05/17.73 77.27/22.27 76.36/26.36 79.77/15.91 76.36/14.55

Bagging 82.50/16.36 76.59/21.36 83.64/13.64 83.86/14.55 75.91/13.18

Boosting 79.55/18.64 72.05/30.45 77.50/13.64 83.86/14.55 71.59/28.64

Chinese dataset

Single 91.27/7.00 90.37/7.32 89.38/9.88 92.71/5.83 88.82/6.39

Bagging 91.27/7.00 90.24/7.60 91.42/6.41 92.42/6.42 89.11/6.11

Boosting 89.97/9.04 83.00/15.69 85.60/8.44 92.85/6.42 83.10/17.52

Australian dataset

Single 85.54/20.01 84.94/14.80 83.05/16.66 84.96/18.18 68.24/22.73

Bagging 85.54/20.01 84.80/15.06 85.67/14.55 86.25/14.55 68.97/23.77

Boosting 84.51/13.78 77.40/21.34 79.72/15.84 86.39/12.99 69.12/22.21

German dataset

Single 77.60/49.67 69.40/66.33 71.40/61.00 73.20/63.00 70.70/96.00

Bagging 77.20/50.33 70.40/65.33 76.50/59.00 75.80/56.67 70.70/95.67

Boosting 76.60/50.00 66.20/54.00 72.50/42.33 74.50/51.33 73.60/50.67

all of the classifiers output class ‘0’ and agree that the testing case is non-bankrupt, the final
result will be ‘0’. In contrast, the final result from the MV method is based on choosing the
class which receives the largest number of votes.

Intuitively, although the UV method can improve on the incidence of Type II error, it
may not improve the average prediction accuracy, because the Type I error is certainly low.
However, if several best base learners that provide relatively good performance are com-
bined, this limitation can certainly be remedied. The process of choosing the base learners
is discussed in the next subsection. Our experimental results (c.f. Sect. 4) demonstrate that
the UV ensemble approach is particularly suitable for financial distress prediction, offering
optimal performance in terms of prediction accuracy, Type I/II errors, misclassification costs,
and ROC curves.

3.2 The base learners

As discussed in Kittler et al. [19], the combination of diverse classifiers should provide better
combination results. Thus, the selection of the base learners for the classifiers to be combined
is critical for the success of the classifier ensemble. Table 3 shows the initial experimental
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Table 4 Dataset information

Dataset Total cases Good/bad cases No. of attributes

Taiwan bankruptcy 440 220/220 95

China bankruptcy 688 344/344 45

Australian credit 690 307/382 14

German credit 1000 700/300 24

results for three types of classifiers including single-, bagging-, and boosting-based classifiers.
Note that the experimental setup is described in more detail in Sect. 4.1.

For our UV ensemble method, we choose the top three diversified classifiers providing the
best performance over the four datasets as the base learners. They are SVM, bagging-based
MLP, and boosting-based CART.

It should be noted that choosing weak classifiers, which provide less accurate prediction
rates for the base learners, could affect the final performance of the UV method. However,
since the goal is to make a UV ensemble approach, which outperforms the baseline classi-
fiers, the performance of ensembles comprised of the best and weaker base learners is not
considered here. This is because the computational cost of constructing multiple classifiers
by the UV ensemble approach is much larger than for the baseline classifiers. For consid-
erations of prediction accuracy and computational cost, combining only the top diversified
classifiers as the base learners is the best strategy to see whether the UV ensemble approach
is suitable for the financial distress prediction problem.

4 Experiments

4.1 Experimental setup

4.1.1 Databases

The key characteristics of the four chosen datasets utilized in this study are presented in
Table 4. The Australian and German datasets are public datasets, which are widely used in
the literature. The Taiwanese and Chinese datasets were collected from the Taiwan Economic
Journal,3 and company bankruptcy is defined based on the business regulations of the Taiwan
Stock Exchange and Shanghai and Shenzhen Stock Exchange.

Here, the method of stratified sampling [1] is used to collect the same number of good
and bad cases. Moreover, each of the attributes is normalized into the range from 0 to 1. For
training and testing each classifier, a tenfold cross-validation strategy is used to divide each
dataset into 10 distinct training and testing subsets.

4.1.2 The classifiers

Five single classification techniques are used, SVM, KNN, CART, MLP, and Naïve Bayes.
For the classifier ensembles, bagging, boosting, stacking, and majority voting are employed.
Table 5 lists the parameters for constructing these classifiers for comparison.

3 http://www.tej.com.tw/twsite/.
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Table 5 Parameters for constructing single classifiers and classifier ensembles

Classifier Parameters

Single classifiers

SVM Kernel function: linear kernel; other related parameters are
based on the default parameters from the LIBSVM toolboxa

KNN The default parameters used are based on the MATLAB toolbox

CART The default parameters used are based on the MATLAB toolbox

MLP The numbers of hidden nodes: 8/16/32/64; learning epochs:
50/100/200/400 [32]

Naïve Bayes Kernel function: kernel density estimate [17]

Classifier ensembles

Bagging Bagging SVM/KNN/CART/MLP/Bayes are constructed;
numbers of bootstrap: 25 [7]

Boosting Boosting SVM/KNN/CART/MLP/Bayes are constructed by
Adaboost.M1; number of iterations: 50 [41]

Stacking Base learners: linearSVM, bag.MLP, and boost.CART (the
same as our UV ensemble); meta learner: linearSVM

Majority voting Base learners: linearSVM, bagMLP, and boost.CART (the same
as for our UV ensemble)

a http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Table 6 Confusion matrix ↓actual\predicted→ Bankruptcy Non-bankruptcy

Bankruptcy (a) (b)

Non-bankruptcy (c) (d)

4.1.3 Evaluation metrics

The four evaluation metrics used to assess the performance of the aforementioned classifiers
(i.e., prediction models) are prediction accuracy, Type I/II errors, misclassification cost, and
the ROC curve. The first three can be measured using a confusion matrix, as given in Table 6.
For a description of the ROC curve, please refer to Sect. 2.2.

Therefore, the average prediction accuracy is obtained by

Prediction accuracy = a + d

a + b + c + d
(1)

and the Type I/II errors are based on

Type I error = b

a + b
, (2)

Type II error = c

c + d
. (3)

On the other hand, the cost for misclassification can be obtained by taking the

(Type I error × bankrupt firms × cost ratio) + (Type II error × non-bankrupt firms). (4)

For example, a cost ratio of 20 indicates that a Type I (II) error is considered to be twenty
times more costly than a Type II (I) error. If the cost ratio is one, the errors are equally
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Table 7 Prediction accuracy and Type I/II errors for different classifiers over the Taiwan dataset

Taiwan Cost ratios/penalties

1 (%) 2 (%) 3 (%) 5 (%) 7 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%)

UV

Acc 83.18 83.18 81.36 75.00 75.00 75.00 75.00 75.00 65.23 65.23

Type I 7.27 7.27 5.00 0.91 0.91 0.91 0.91 0.91 0.00 0.00

Type II 26.36 26.36 32.27 49.09 49.09 49.09 49.09 49.09 69.55 69.55

Stacking

Acc 83.64 83.64 83.64 83.64 53.64 53.64 53.64 53.64 53.64 53.64

Type I 13.64 13.64 13.64 13.64 1.36 1.36 1.36 1.36 1.36 1.36

Type II 19.09 19.09 19.09 19.09 91.36 91.36 91.36 91.36 91.36 91.36

MV

Acc 84.32 84.32 84.32 84.32 84.32 84.32 84.32 84.32 84.32 84.32

Type I 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09

Type II 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27 22.27

Single

linearSVM

Acc 82.05 81.59 75.45 75.45 75.45 75.45 75.45 75.45 75.45 75.45

Type I 17.73 9.09 1.82 1.82 1.82 1.82 1.82 1.82 1.82 1.82

Type II 18.18 27.73 47.27 47.27 47.27 47.27 47.27 47.27 47.27 47.27

KNN

Acc 77.50 75.68 75.68 75.68 75.68 64.77 64.77 64.77 64.77 64.77

Type I 12.27 4.55 4.55 4.55 4.55 1.82 1.82 1.82 1.82 1.82

Type II 32.73 44.09 44.09 44.09 44.09 68.64 68.64 68.64 68.64 68.64

MLP

Acc 76.36 76.36 76.36 76.36 76.36 76.36 76.36 76.36 76.36 76.36

Type I 26.36 26.36 26.36 26.36 26.36 26.36 26.36 26.36 26.36 26.36

Type II 20.91 20.91 20.91 20.91 20.91 20.91 20.91 20.91 20.91 20.91

CART

Acc 79.77 79.77 69.55 65.68 65.68 65.68 50.00 50.00 50.00 50.00

Type I 15.91 15.91 5.00 2.73 2.73 2.73 0.00 0.00 0.00 0.00

Type II 24.55 24.55 55.91 65.91 65.91 65.91 100.00 100.00 100.00 100.00

Bayes

Acc 76.36 76.36 76.36 76.36 76.36 76.36 76.36 76.36 76.36 76.36

Type I 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55

Type II 32.73 32.73 32.73 32.73 32.73 32.73 32.73 32.73 32.73 32.73

Bag

LinearSVM

Acc 82.50 80.23 75.68 75.68 75.68 75.68 75.68 75.68 75.68 75.68

Type I 16.36 8.64 2.27 2.27 2.27 2.27 2.27 2.27 2.27 2.27

Type II 18.64 30.91 46.36 46.36 46.36 46.36 46.36 46.36 46.36 46.36
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Table 7 continued

Taiwan Cost ratios/penalties

1 (%) 2 (%) 3 (%) 5 (%) 7 (%) 10 (%) 15 (%) 20 (%) 25 (%) 30 (%)

KNN

Acc 78.18 76.14 76.14 76.14 76.14 67.05 67.05 67.05 67.05 67.05

Type I 11.82 4.55 4.55 4.55 4.55 2.27 2.27 2.27 2.27 2.27

Type II 31.82 43.18 43.18 43.18 43.18 63.64 63.64 63.64 63.64 63.64

MLP

Acc 83.64 83.64 83.64 83.64 83.64 83.64 83.64 83.64 83.64 83.64

Type I 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64

Type II 19.09 19.09 19.09 19.09 19.09 19.09 19.09 19.09 19.09 19.09

CART

Acc 83.86 83.64 83.64 70.23 67.73 67.73 67.73 60.23 50.00 50.00

Type I 14.55 10.91 10.91 2.73 1.82 1.82 1.82 0.91 0.00 0.00

Type II 17.73 21.82 21.82 56.82 62.73 62.73 62.73 78.64 100.00 100.00

Bayes

Acc 75.91 75.91 75.91 75.91 75.91 75.91 75.91 75.91 75.91 75.91

Type I 13.18 13.18 13.18 13.18 13.18 13.18 13.18 13.18 13.18 13.18

Type II 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00

Boost

LinearSVM

Acc 79.77 79.77 75.23 72.05 72.05 72.05 67.95 67.95 67.95 67.95

Type I 15.45 11.82 5.91 3.18 3.18 3.18 2.27 2.27 2.27 2.27

Type II 25.00 28.64 43.64 52.73 52.73 52.73 61.82 61.82 61.82 61.82

KNN

Acc 75.23 75.00 75.00 72.95 72.95 72.95 72.95 72.95 72.95 72.95

Type I 21.36 7.73 7.73 5.91 5.91 5.91 5.91 5.91 5.91 5.91

Type II 28.18 42.27 42.27 48.18 48.18 48.18 48.18 48.18 48.18 48.18

MLP

Acc 77.50 77.50 77.50 77.50 77.50 77.50 77.50 77.50 77.50 77.50

Type I 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64 13.64

Type II 31.36 31.36 31.36 31.36 31.36 31.36 31.36 31.36 31.36 31.36

CART

Acc 83.86 83.86 83.86 83.86 83.86 83.86 83.86 83.86 83.86 83.86

Type I 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55

Type II 17.73 17.73 17.73 17.73 17.73 17.73 17.73 17.73 17.73 17.73

Bayes

Acc 71.59 71.59 71.59 71.59 71.59 71.59 71.59 71.59 71.59 71.59

Type I 28.64 28.64 28.64 28.64 28.64 28.64 28.64 28.64 28.64 28.64

Type II 28.18 28.18 28.18 28.18 28.18 28.18 28.18 28.18 28.18 28.18

The bold-faced numbers mean that they are significantly different from the others (p < 0.01)
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Fig. 3 ROC curves for UV ensemble, linear.SVM and bag.CART over the Taiwan dataset

costly. In this study, different cost ratios are examined, ranging from 1 to 30. Moreover, each
classifier is tested using different penalty weights (from 1 to 30), in order to fine-tune the
complexity of the prediction model during cross-validation [11].

4.2 Experimental results

4.2.1 Results on the Taiwan dataset

Table 7 shows the prediction accuracy and Type I/II errors for the different classifiers using
different cost ratios and the Taiwan dataset. The bold-faced numbers indicate the misclassi-
fication costs of those classifiers. For example, when the cost ratio is 1, the stacking, MV,
bag.MLP, bag.CART, and boost.CART methods perform significantly better than the other
classifiers. Note that the level of significance is measured by the Wilcoxon test [9].

According to these results, our UV ensemble approach outperforms the other methods for
cost ratios from 2 to 30. Other better classifiers are MV and bag.CART for cost ratios from
1 to 3 and bag.linearSVM for cost ratios of 5, 25, and 30. However, the good performance
of these approaches does not hold for a long range of cost ratios. The results indicate that
the UV ensemble offers a more stable performance than the other classifiers, with the least
misclassification cost over various cost ratios.

Figure 3 shows theROCcurves for theUVensemble, linear.SVM(thebest single classifier)
and bag.CART (the best classifier ensemble) for further comparison. We can observe that the
UV ensemble produces the smallest area under the curve. In other words, our UV ensemble
approach offers the best performance.
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Table 8 Prediction accuracy and Type I/II errors of different classifiers over the China dataset

China Cost ratios/penalties

1% 2% 3% 5% 7% 10% 15% 20% 25% 30%

UV

Acc 91.27 90.83 90.83 90.83 90.83 90.83 89.53 72.96 72.96 72.96

Type I 4.66 3.50 3.50 3.50 3.50 3.50 3.22 1.47 1.47 1.47

Type II 12.79 14.83 14.83 14.83 14.83 14.83 17.73 52.61 52.61 52.61

Stacking

Acc 91.57 91.57 91.57 91.57 91.57 91.57 91.57 49.85 49.85 49.85

Type I 6.12 6.12 6.12 6.12 6.12 6.12 6.12 0.29 0.29 0.29

Type II 10.74 10.74 10.74 10.74 10.74 10.74 10.74 100.00 100.00 100.00

MV

Acc 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00

Type I 5.84 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.55

Type II 10.16 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45 10.45

Single

LinearSVM

Acc 91.27 90.83 90.83 90.83 90.83 90.83 89.37 80.80 80.80 72.67

Type I 7.00 4.97 4.97 4.97 4.97 4.97 4.69 3.52 3.52 2.93

Type II 10.45 13.37 13.37 13.37 13.37 13.37 16.56 34.88 34.88 51.73

KNN

Acc 90.39 90.39 88.94 88.94 88.94 88.94 88.94 80.34 80.34 80.34

Type I 5.55 5.55 4.09 4.09 4.09 4.09 4.09 2.93 2.93 2.93

Type II 13.67 13.67 18.03 18.03 18.03 18.03 18.03 36.39 36.39 36.39

MLP

Acc 89.38 89.38 89.38 89.38 89.38 89.38 89.38 89.38 89.38 89.38

Type I 9.88 9.88 9.88 9.88 9.88 9.88 9.88 9.88 9.88 9.88

Type II 11.36 11.36 11.36 11.36 11.36 11.36 11.36 11.36 11.36 11.36

CART

Acc 93.00 93.00 93.00 92.71 92.71 92.71 92.71 50.00 50.00 50.00

Type I 5.25 4.96 4.96 4.67 4.67 4.67 4.67 0.00 0.00 0.00

Type II 8.75 9.04 9.04 9.90 9.90 9.90 9.90 100.00 100.00 100.00

Bayes

Acc 88.82 88.82 88.82 88.82 88.82 88.82 88.82 88.82 88.82 88.82

Type I 6.39 6.39 6.39 6.39 6.39 6.39 6.39 6.39 6.39 6.39

Type II 15.97 15.97 15.97 15.97 15.97 15.97 15.97 15.97 15.97 15.97

Bag

LinearSVM

Acc 91.27 90.68 90.68 89.81 89.81 88.51 88.51 88.51 74.70 67.44

Type I 7.00 5.26 5.26 4.69 4.69 4.39 4.39 4.39 3.23 2.64

Type II 10.45 13.37 13.37 15.69 15.69 18.59 18.59 18.59 47.38 62.48
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Table 8 continued

China Cost ratios/penalties

1% 2% 3% 5% 7% 10% 15% 20% 25% 30%

KNN

Acc 90.24 90.24 89.08 89.08 89.08 89.08 89.08 89.08 89.08 82.09

Type I 5.56 5.56 4.09 4.09 4.09 4.09 4.09 4.09 4.09 3.51

Type II 13.96 13.96 17.74 17.74 17.74 17.74 17.74 17.74 17.74 32.31

MLP

Acc 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42 91.42

Type I 6.41 6.41 6.41 6.41 6.41 6.41 6.41 6.41 6.41 6.41

Type II 10.74 10.74 10.74 10.74 10.74 10.74 10.74 10.74 10.74 10.74

CART

Acc 92.86 92.86 92.86 92.86 92.86 90.70 90.70 90.70 52.35 52.35

Type I 4.96 4.96 4.96 4.96 4.96 4.38 4.38 4.38 0.59 0.59

Type II 9.33 9.33 9.33 9.33 9.33 14.23 14.23 14.23 94.71 94.71

Bayes

Acc 89.11 89.11 89.11 89.11 89.11 89.11 89.11 89.11 89.11 89.11

Type I 6.11 6.11 6.11 6.11 6.11 6.11 6.11 6.11 6.11 6.11

Type II 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67 15.67

Boost

LinearSVM

Acc 91.13 91.13 91.13 89.24 86.77 86.77 86.77 86.77 71.94 71.94

Type I 5.83 5.83 5.83 4.69 3.82 3.82 3.82 3.82 2.34 2.34

Type II 11.92 11.92 11.92 16.82 22.65 22.65 22.65 22.65 53.77 53.77

KNN

Acc 83.88 83.88 83.88 83.88 83.88 83.88 83.88 83.88 83.88 83.88

Type I 13.38 13.38 13.38 13.38 13.38 13.38 13.38 13.38 13.38 13.38

Type II 18.87 18.87 18.87 18.87 18.87 18.87 18.87 18.87 18.87 18.87

MLP

Acc 85.60 85.60 85.60 85.60 85.60 85.60 85.60 85.60 85.60 85.60

Type I 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44 8.44

Type II 20.36 20.36 20.36 20.36 20.36 20.36 20.36 20.36 20.36 20.36

CART

Acc 92.85 92.85 92.85 92.85 92.85 92.85 92.85 92.85 92.85 92.85

Type I 6.42 6.42 6.42 6.42 6.42 6.42 6.42 6.42 6.42 6.42

Type II 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87 7.87

Bayes

Acc 83.10 83.10 83.10 83.10 83.10 83.10 83.10 83.10 83.10 83.10

Type I 17.52 17.52 17.52 17.52 17.52 17.52 17.52 17.52 17.52 17.52

Type II 16.28 16.28 16.28 16.28 16.28 16.28 16.28 16.28 16.28 16.28

The bold-faced numbers mean that they are significantly different from the others (p <0.01)
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Fig. 4 ROC curves for UV ensemble, linear.SVM and bag.CART over the China dataset

4.2.2 Results for the China dataset

Table 8 illustrates the performance of single classifiers and classifier ensembles over the
China dataset. As we can see, the UV ensemble, CART, and bag.CART perform better than
the other methods. In particular, the UV ensemble performs very well for a range of cost
ratios from 3 to 30, while CART and bag.CART perform better for cost ratios from 1 to 15.

Figure 4 shows theROCcurves for theUVensemble, linearSVM, and bag.CARTmethods.
Further examination shows that the UV ensemble performs better than the other methods
for various misclassification costs. The only exception is when the Type I error is 0.05 or
less, in which case bag.CART performs better than the UV ensemble method. However, the
differences in performance are very small. Therefore, generally speaking, the UV ensemble,
CART, and bag.CART are all good choices for the China dataset.

4.2.3 Results for the Australian dataset

Table 9 shows the performance results for different classifiers over theAustralian dataset. Like
the results for the Taiwan and China datasets, the UV ensemble method outperforms most
of the other classifiers for cost ratios in the range of 2–30, while linearSVM provides good
performancewhen the cost ratios range from10 to 30.The performance of bag.linearSVMand
boost.linearSVM is similar to that of linearSVM. Another classifier that performs relatively
well is bag.CART when the cost ratios are 3 and from 15 to 30.
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Table 9 Prediction accuracy and Type I/II errors of different classifiers over the Australian dataset

Australian Cost ratios/penalties

1% 2% 3% 5% 7% 10% 15% 20% 25% 30%

UV

Acc 86.37 84.77 82.31 82.31 82.31 79.41 79.41 56.38 56.38 56.38

Type I 9.61 6.21 3.11 3.11 3.11 2.33 2.33 0.00 0.00 0.00

Type II 18.61 26.43 35.83 35.83 35.83 43.31 43.31 98.03 98.03 98.03

Stacking

Acc 85.67 85.67 85.67 65.24 65.24 65.24 65.24 65.24 65.24 65.24

Type I 14.55 14.55 14.55 3.62 3.62 3.62 3.62 3.62 3.62 3.62

Type II 14.02 14.02 14.02 73.56 73.56 73.56 73.56 73.56 73.56 73.56

MV

Acc 86.52 86.52 86.52 86.52 86.52 86.52 86.52 86.52 86.52 86.52

Type I 9.87 9.61 9.61 9.61 9.61 9.61 9.61 9.61 9.61 9.61

Type II 17.95 18.28 18.28 18.28 18.28 18.28 18.28 18.28 18.28 18.28

Single

LinearSVM

Acc 85.54 82.45 79.55 79.55 79.55 79.55 79.55 56.53 56.53 56.53

Type I 20.01 5.72 2.59 2.59 2.59 2.59 2.59 0.00 0.00 0.00

Type II 7.53 32.25 42.66 42.66 42.66 42.66 42.66 97.70 97.70 97.70

KNN

Acc 84.94 82.17 82.17 82.17 82.17 68.96 68.96 68.96 68.96 68.96

Type I 14.80 5.99 5.99 5.99 5.99 3.11 3.11 3.11 3.11 3.11

Type II 15.34 32.53 32.53 32.53 32.53 65.85 65.85 65.85 65.85 65.85

MLP

Acc 83.05 83.05 83.05 83.05 83.05 83.05 83.05 83.05 83.05 83.05

Type I 16.66 16.66 16.66 16.66 16.66 16.66 16.66 16.66 16.66 16.66

Type II 17.26 17.26 17.26 17.26 17.26 17.26 17.26 17.26 17.26 17.26

CART

Acc 84.96 81.91 81.91 75.37 75.37 75.37 70.69 55.51 55.51 55.51

Type I 18.18 6.51 6.51 2.33 2.33 2.33 1.55 0.00 0.00 0.00

Type II 11.08 32.49 32.49 52.45 52.45 52.45 63.98 100.00 100.00 100.00

Bayes

Acc 68.24 68.24 68.24 68.24 68.24 68.24 68.24 68.24 68.24 68.24

Type I 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73 22.73

Type II 42.98 42.98 42.98 42.98 42.98 42.98 42.98 42.98 42.98 42.98

Bag

LinearSVM

Acc 85.54 83.89 83.89 79.85 79.85 75.65 75.65 56.82 56.82 56.82

Type I 20.01 5.46 5.46 3.12 3.12 2.07 2.07 0.00 0.00 0.00

Type II 7.53 29.31 29.31 41.34 41.34 52.08 52.08 97.04 97.04 97.04
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Table 9 continued

Australian Cost ratios/penalties

1% 2% 3% 5% 7% 10% 15% 20% 25% 30%

KNN

Acc 84.80 82.89 82.89 82.89 82.89 72.01 72.01 72.01 72.01 72.01

Type I 15.06 6.50 6.50 6.50 6.50 3.63 3.63 3.63 3.63 3.63

Type II 15.34 30.28 30.28 30.28 30.28 58.35 58.35 58.35 58.35 58.35

MLP

Acc 85.67 85.67 85.67 85.67 85.67 85.67 85.67 85.67 85.67 85.67

Type I 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55 14.55

Type II 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02 14.02

CART

Acc 86.39 85.35 83.18 78.12 78.12 78.12 78.12 56.97 56.97 56.97

Type I 11.45 7.81 5.46 2.60 2.60 2.60 2.60 0.00 0.00 0.00

Type II 16.29 23.16 30.97 45.91 45.91 45.91 45.91 96.73 96.73 96.73

Bayes

Acc 68.97 68.97 68.97 68.97 68.97 68.97 68.97 68.97 68.97 68.97

Type I 23.77 23.77 23.77 23.77 23.77 23.77 23.77 23.77 23.77 23.77

Type II 40.03 40.03 40.03 40.03 40.03 40.03 40.03 40.03 40.03 40.03

Boost

LinearSVM

Acc 85.38 83.90 83.90 81.44 76.94 76.94 76.94 67.68 67.68 67.68

Type I 13.25 5.47 5.47 4.14 2.34 2.34 2.34 1.30 1.30 1.30

Type II 16.32 29.35 29.35 36.48 48.85 48.85 48.85 71.01 71.01 71.01

KNN

Acc 78.27 78.27 78.27 78.27 78.27 78.27 78.27 78.27 78.27 78.27

Type I 15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33 15.33

Type II 29.68 29.68 29.68 29.68 29.68 29.68 29.68 29.68 29.68 29.68

MLP

Acc 79.72 79.72 79.72 79.72 79.72 79.72 79.72 79.72 79.72 79.72

Type I 15.84 15.84 15.84 15.84 15.84 15.84 15.84 15.84 15.84 15.84

Type II 25.77 25.77 25.77 25.77 25.77 25.77 25.77 25.77 25.77 25.77

CART

Acc 87.97 87.97 87.97 87.97 87.97 57.22 57.22 57.22 57.22 57.22

Type I 11.44 11.44 11.44 11.44 11.44 4.62 4.62 4.62 4.62 4.62

Type II 12.75 12.75 12.75 12.75 12.75 90.32 90.32 90.32 90.32 90.32

Bayes

Acc 69.12 69.12 69.12 69.12 69.12 69.12 69.12 69.12 69.12 69.12

Type I 22.21 22.21 22.21 22.21 22.21 22.21 22.21 22.21 22.21 22.21

Type II 41.66 41.66 41.66 41.66 41.66 41.66 41.66 41.66 41.66 41.66

The bold-faced numbers mean that they are significantly different from the others (p < 0.01)
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Fig. 5 ROC curves for UV ensemble, linear.SVM, and bag.CART over the Australian dataset

The results indicate that only the UV ensemble provides a more stable performance for
cost ratio from 2 to 30 because the other classifiers, such as linearSVM, bag.linearSVM,
boost.linearSVM, and bag.CART, only perform well over some cost ratios.

Figure 5 shows the ROC curves for the UV ensemble, linear.SVMand bag.CARTmethods
for comparison. Although the curves for all three classifiers are similar, on average, the UV
ensemble has the least area under the curve, which means that the UV ensemble is the better
choice for the Australian dataset.

4.2.4 Results on the German dataset

Table 10 shows the prediction accuracy and Type I/II errors obtained for different classifiers
based on different cost ratios obtained using the German dataset. As we can see, the UV
ensemble performs significantly better than the other classifiers. Specifically, the UV ensem-
ble provides better performances when the cost ratios range from 2 to 30, which is almost
the same as the results obtained using the other three datasets. On the other hand, linearSVM
and bag.linearSVM can provide good performance for some cost ratios.

Figure 6 shows the ROC curves for the UV ensemble, linear.SVM, and bag.CART
approaches. Although the UV ensemble and linearSVM curves are very close, in most cases
(i.e., the Type I error is smaller than 0.3) the UV ensemble approach produces the curve with
the least area.
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Table 10 Prediction accuracy and Type I/II errors of different classifiers over the German dataset

German Cost ratios/penalties

1% 2% 3% 5% 7% 10% 15% 20% 25% 30%

UV

Acc 75.50 72.50 72.50 63.50 53.40 46.10 46.10 46.10 46.10 30.00

Type I 36.00 23.67 23.67 11.67 5.67 2.00 2.00 2.00 2.00 0.00

Type II 19.57 29.14 29.14 47.14 64.14 76.14 76.14 76.14 76.14 100.00

Stacking

Acc 76.50 76.50 76.50 30.00 30.00 30.00 30.00 30.00 30.00 30.00

Type I 59.00 59.00 59.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Type II 8.29 8.29 8.29 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MV

Acc 77.60 75.20 75.20 75.20 75.20 75.20 75.20 75.20 75.20 75.20

Type I 53.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00 41.00

Type II 9.29 17.86 17.86 17.86 17.86 17.86 17.86 17.86 17.86 17.86

Single

LinearSVM

Acc 77.60 73.80 73.80 63.60 53.20 46.00 46.00 46.00 30.00 30.00

Type I 49.67 28.67 28.67 13.33 6.33 2.33 2.33 2.33 0.00 0.00

Type II 10.71 25.14 25.14 46.29 64.14 76.14 76.14 76.14 100.00 100.00

KNN

Acc 69.40 68.70 62.30 46.50 46.50 46.50 46.50 46.50 46.50 46.50

Type I 66.33 38.00 20.33 5.00 5.00 5.00 5.00 5.00 5.00 5.00

Type II 15.29 28.43 45.14 74.29 74.29 74.29 74.29 74.29 74.29 74.29

MLP

Acc 71.40 71.40 71.40 71.40 71.40 71.40 71.40 71.40 71.40 71.40

Type I 61.00 61.00 61.00 61.00 61.00 61.00 61.00 61.00 61.00 61.00

Type II 14.71 14.71 14.71 14.71 14.71 14.71 14.71 14.71 14.71 14.71

CART

Acc 73.20 67.60 64.20 59.20 45.30 30.00 30.00 30.00 30.00 30.00

Type I 63.00 28.67 20.00 15.33 7.33 0.00 0.00 0.00 0.00 0.00

Type II 11.29 34.00 42.57 51.71 75.00 100.00 100.00 100.00 100.00 100.00

Bayes

Acc 70.70 70.70 70.70 70.70 70.70 70.70 70.70 70.70 70.70 70.70

Type I 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00 96.00

Type II 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71

Bag

LinearSVM

Acc 77.20 75.60 70.30 64.70 50.60 50.60 39.80 39.80 39.80 39.80

Type I 50.33 37.33 21.67 13.00 4.67 4.67 1.00 1.00 1.00 1.00

Type II 11.00 18.86 33.14 44.86 68.57 68.57 85.57 85.57 85.57 85.57
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Table 10 continued

German Cost ratios/penalties

1% 2% 3% 5% 7% 10% 15% 20% 25% 30%

KNN

Acc 70.40 64.30 64.30 49.50 49.50 49.50 49.50 49.50 49.50 49.50

Type I 65.33 19.33 19.33 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Type II 14.29 42.71 42.71 69.57 69.57 69.57 69.57 69.57 69.57 69.57

MLP

Acc 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50 76.50

Type I 59.00 59.00 59.00 59.00 59.00 59.00 59.00 59.00 59.00 59.00

Type II 8.29 8.29 8.29 8.29 8.29 8.29 8.29 8.29 8.29 8.29

CART

Acc 76.00 76.00 72.10 59.70 59.70 42.30 32.10 32.10 30.00 30.00

Type I 43.33 43.33 31.67 11.33 11.33 3.33 0.33 0.33 0.00 0.00

Type II 15.71 15.71 26.29 52.71 52.71 81.00 96.86 96.86 100.00 100.00

Bayes

Acc 70.70 70.70 70.70 70.70 70.70 70.70 70.70 70.70 70.70 70.70

Type I 95.67 95.67 95.67 95.67 95.67 95.67 95.67 95.67 95.67 95.67

Type II 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86

Boost

LinearSVM

Acc 76.60 74.40 65.60 65.60 65.60 58.70 58.70 58.70 58.70 58.70

Type I 50.00 32.33 15.33 15.33 15.33 11.67 11.67 11.67 11.67 11.67

Type II 12.00 22.71 42.57 42.57 42.57 54.00 54.00 54.00 54.00 54.00

KNN

Acc 66.20 65.10 53.70 52.70 52.70 52.70 52.70 52.70 52.70 52.70

Type I 54.00 36.33 10.33 9.33 9.33 9.33 9.33 9.33 9.33 9.33

Type II 25.14 34.29 61.71 63.57 63.57 63.57 63.57 63.57 63.57 63.57

MLP

Acc 72.50 72.50 72.50 72.50 72.50 72.50 72.50 72.50 72.50 72.50

Type I 42.33 42.33 42.33 42.33 42.33 42.33 42.33 42.33 42.33 42.33

Type II 21.14 21.14 21.14 21.14 21.14 21.14 21.14 21.14 21.14 21.14

CART

Acc 75.90 75.90 75.90 75.90 75.90 75.90 75.90 75.90 75.90 75.90

Type I 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00 49.00

Type II 13.43 13.43 13.43 13.43 13.43 13.43 13.43 13.43 13.43 13.43

Bayes

Acc 73.60 73.60 73.60 73.60 73.60 73.60 73.60 73.60 73.60 73.60

Type I 50.67 50.67 50.67 50.67 50.67 50.67 50.67 50.67 50.67 50.67

Type II 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00

The bold-faced numbers mean that they are significantly different from the others (p < 0.01)
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Fig. 6 ROC curves of UV ensemble, linear.SVM, and bag.CART over the German dataset

Table 11 Recommended
classifiers for the different four
datasets

Taiwanese Chinese Australian German

1 UV UV UV UV

2 CART linearSVM

3 bag.CART bag.linearSVM

4.2.5 Discussion

Table 11 summarizes the best (or better) prediction models over the four datasets. Note that
only the UV ensemble approach is recommended for the Taiwan and Australian datasets
because none of the other classifiers offers similar performance (i.e., better performances
over many cost ratios).

Specifically, when the cost ratio is larger than 2, the UV ensemble performs the best
over the Taiwanese and Australian datasets. On the other hand, for the Chinese and German
datasets, the UV ensemble outperforms the other classifiers, when the cost ratio is larger than
3. In other words, which single classifier or classifier ensemble performs that best differs
when used over different datasets. However, the UV ensemble performs consistently better
than the other classifiers over all four datasets. This suggests that the UV ensemble has better
potential for use on different financial distress datasets.
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Fig. 7 ROC curves of UV ensemble, linear.SVM, and bag.CART

4.2.6 Practical example

In order to obtain a better understanding of the effectiveness of using this method to calculate
the ratio between bankruptcy and non-bankruptcy in a realistic example, another dataset is
collected, using data from 2005 to 2015. The dataset contains data for 77 high bankruptcy
risk and 231 normal companies. Figure 7 shows the ROC curves for the UV ensemble,
linear.SVM, and bag.CART methods. It can be seen that the UV ensemble method still
performs reasonably well.

Table 12 shows the cost ratios for the different classifiers. As we can see, the cost of
the UV ensemble increases very slowly, which is similar to the bag.CART and boost.CART
results. According to theWilcoxon test, the costs of these three classifiers are not significantly
different.

5 Conclusion

Although improving on the prediction accuracy of financial distress prediction models is
usually the most important issue addressed in research studies, lowering the Type I error is
also important in practice, because a prediction model that provides a lower Type I error rate
can reduce the risk to the financial institution.

In order to obtain good prediction accuracy as well as the lower Type I error, we propose
a classifier ensemble approach based on the unanimous voting (UV) method, which com-
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bines multiple outputs produced by different classifiers. This new UV ensemble approach is
different from classic classifier ensemble approaches that use the majority voting method.
The final prediction result of our UV ensemble is based on choosing the class for which all
classifiers agree, whereas the majority voting method is based on choosing the class which
receives the largest number of votes.

Using four relevant datasets, two bankruptcy prediction datasets and two credit scoring
datasets, the results obtained with our proposed UV ensemble approach are compared with
those obtained with five well-known single classifiers including SVM, CART, KNN, MLP,
and Bayes and classifier ensembles using bagging and boosting algorithms. The results show
that the UV ensemble outperforms the other classifiers over all four datasets. Specifically,
the UV ensemble can provide the least misclassification cost.
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